
Foundations
of

Game Engine Development

Foundations
of

Game Engine Development

VOLUME 2
RENDERING

by Eric Lengyel

Terathon Software LLC
Lincoln, California

Foundations of Game Engine Development
Volume 2: Rendering

ISBN-13: 978-0-9858117-5-4

Copyright © 2019, by Eric Lengyel

All rights reserved. No part of this publication may be reproduced, stored in an
information retrieval system, transmitted, or utilized in any form, electronic or
mechanical, including photocopying, scanning, digitizing, or recording, without
the prior permission of the copyright owner.

Eighth printing

Published by Terathon Software LLC
www.terathon.com

Series website: foundationsofgameenginedev.com

About the cover: The cover image is a scene from a game entitled The 31st,
developed with the Tombstone Engine. Artwork by Javier Moya Pérez.

 1

7.5 Tangent Space

Up to this point, our shading calculations have been carried out in object space.
More advanced techniques, some of which have become standard fixtures in game
engines, are able to make use of texture maps that store finely detailed geometric
information instead of colors. �e most common example is the normal mapping
technique in which a texture map contains vector data, and this is introduced in the
next section. �e numerical values stored in this kind of texture map are expressed
in the coordinate system of the texture map itself so that the geometric details are
independent of any particular model. �is allows a geometric texture map to be
applied to any triangle mesh without having to account for the object-space coor-
dinate system used by its vertices.
 In the coordinate system of a texture map, the x and y axes are aligned to the
horizontal and vertical directions in the 2D image, and the z axis points upward out
of the image plane, as shown in Figure 7.11(a). If the origin of the texture map is
located in the upper-left corner, then this constitutes a left-handed coordinate sys-
tem. It is also possible to flip the texture upside down and put the origin in the
lower-left corner to create a right-handed coordinate system. Either choice works
fine because we will need to account for the handedness inherent in the mapping
of the texture map to a surface anyway.
 In order to perform shading calculations that use geometric information stored
in a texture map, we need a way to transform between the coordinate system of the

Figure 7.11. (a) In the coordinate system of a texture map, the x and y axes are aligned to
the texel image, and the z axis points upward out of the image plane. (b) Each vertex in a
triangle mesh has a normal vector n and a perpendicular tangent vector t, and both vectors
form a smooth field over the entire model. �e direction that the tangent vector points
within the tangent plane is determined by the orientation of the texture map at each vertex.

2 Chapter 7 Shading

texture map and object space. �is is done by identifying the directions in object
space that correspond to the coordinate axes of the texture map. �ese object-space
directions are not constant, but vary from triangle to triangle. For a single triangle,
we can think of the texture map as lying in the triangle’s plane with its x and y axes
oriented in the directions that are aligned to the (),u v texture coordinates assigned
to the triangle’s vertices. �e z axis of the texture map points directly out of the
plane, so it is aligned with the triangle’s normal vector in object space. �e x and
y axes of the texture map point along directions that are tangent to the surface in
object space, and at least one of these vectors needs to be calculated ahead of time.
 As with normal vectors, we calculate an average unit-length tangent vector t
for each vertex in a triangle mesh. �is lets us create a smooth tangent field on the
surface of a model, as shown in Figure 7.11(b). Although it may not be strictly true
for the specific texture mapping applied to a model, we assume that the two tangent
directions are perpendicular to each other, so a second tangent direction b called
the bitangent vector can be calculated with a cross product. �e three vectors t, b,
and n form the basis of the tangent frame at each vertex, and the coordinate space
in which the x, y, and z axes are aligned to these directions is called tangent space.
We can transform vectors from tangent space to object space using the 3 3× matrix

tangentM given by

 tangent

 ↑ ↑ ↑
 =  
 ↓ ↓ ↓ 

M t b n , (7.31)

which has the vectors t, b, and n as its columns. Since this matrix is orthogonal,
the reverse transformation from object space to tangent space is the transpose

T

T T
tangent

T

← → 
 = ← → 
 ← → 

t
M b

n
, (7.32)

where the vectors t, b, and n form the rows. �e name TBN matrix is often used to
refer to either one of these matrices.
 Applying a little linear algebra to the vertex positions and their associated tex-
ture coordinates lets us calculate the tangent field for a triangle mesh. Let 0 , 1 ,
and 2 be the three vertices of a triangle, wound in counterclockwise order, and let
(),i iu v represent the texture coordinates associated with the vertex i . �e values
of u and v correspond to distances along the axes t and b that are aligned to the x

7.5 Tangent Space 3

and y directions of the texture map. �is means that we can express the difference
between two points with known texture coordinates as

 () ()i j i j i ju u v v− = − + −t b  . (7.33)

To determine what the vectors t and b are, we can form a system of equations using
differences between the vertices on two of the triangle’s edges. After making the
definitions

() ()
() ()

1 1 0 1 1 1 0 1 0

2 2 0 2 2 2 0 2 0

, , , ,
, , , ,

x y u u v v
x y u u v v

= − = − −

= − = − −

e
e

 
  (7.34)

we can write this system very compactly as

1 1 1

2 2 2

x y
x y

= +

= +

e t b
e t b. (7.35)

An equivalent matrix equation is

 1 2
1 2

1 2

x x
y y

   ↑ ↑ ↑ ↑     =          ↓ ↓ ↓ ↓   

e e t b , (7.36)

where 1e , 2e , t and b are all column vectors. �is equation is readily solved by
inverting the 2 2× matrix of coefficients on the right side to produce

2 2

1 2
1 11 2 2 1

1 .
y x
y xx y x y

   ↑ ↑ ↑ ↑ −    =      −−     ↓ ↓ ↓ ↓   

t b e e (7.37)

 To calculate an average tangent vector and bitangent vector at each vertex, we
maintain sums of the vectors produced for each triangle and later normalize them.
When values of t and b are calculated with Equation (7.37), they are added to the
sums for the three vertices referenced by the triangle. �e results are usually not
exactly perpendicular, but unless the texture mapping is skewed to a significant
degree, they should be close to perpendicular. We can nudge them the rest of the
way by applying Gram-Schmidt orthonormalization. First, assuming the vertex

4 Chapter 7 Shading

normal vector n has unit length, we make sure the vertex tangent vector t is per-
pendicular to n by replacing it with

 ()()nrm⊥ = − ⋅t t t n n (7.38)

using the rejection operation described in Section 1.6. (We use the subscript ⊥
simply to mean that the vector has been orthonormalized.) �e vertex bitangent
vector b is then made perpendicular to both t and n by calculating

 () ()()nrm⊥ ⊥ ⊥= − ⋅ − ⋅b b b n n b t t . (7.39)

�e vectors ⊥t , ⊥b , and n now form a set of unit-length orthogonal axes for the
tangent frame at a vertex. Code that implements this entire process is provided in
Listing 7.4.
 Since the vectors are orthogonal, it is not necessary to store all three of the
vectors ⊥t , ⊥b , and n for each vertex. Just the normal vector and the tangent vector
will always suffice, but we do need one additional bit of information. �e tangent
frame can form either a right-handed or left-handed coordinate system, and which
one is given by the sign of ()tangentdet M . Calling the sign of this determinant σ , we
can reconstitute the bitangent with the cross product

 () ,σ⊥ ⊥= ×b n t (7.40)

and then only the normal and tangent need to be supplied as vertex attributes. An
example showing the normal field and tangent field for a character model is pro-
vided in Figure 7.12. One possible way to communicate the value of σ to the vertex
shader is by extending the tangent to a four-component vertex attribute and storing
σ in the w coordinate. �is is the method used in Listing 7.4, but a more clever
approach might encode σ in the least significant bit of one of the x, y, or z coordi-
nates of the tangent to avoid increasing the size of the vertex data.
 It is common for there to be discontinuities in a model’s texture mapping, and
this is in fact unavoidable for anything topologically equivalent to a sphere because
a continuous nonvanishing tangent field is impossible. In these cases, vertices are
duplicated along the triangle edges where the discontinuity occurs. �e additional
vertices have the same positions, but they could have different texture coordinates.
Because they are indexed separately, their tangent vectors are not averaged, and
this can lead to a visible boundary where an abrupt change in shading is visible.
To avoid this, duplicates need to be identified so that their tangents can be averaged
and set equal to each other, but only if the tangent frames have the same handed-
ness and the tangents are pointing in similar directions.

7.5 Tangent Space 5

Listing 7.4. �is function calculates the per-vertex tangent vectors for the triangle mesh having
triangleCount triangles with indices specified by triangleArray and vertexCount vertices with
positions specified by vertexArray. �e per-vertex normal vectors and texture coordinates are
given by normalArray and texcoordArray. Tangents are written to tangentArray, which must be
large enough to hold vertexCount elements. �e determinant of the matrix tangentM at each vertex is
stored in the w coordinate of each tangent vector.

void CalculateTangents(int32 triangleCount, const Triangle *triangleArray,
 int32 vertexCount, const Point3D *vertexArray, const Vector3D *normalArray,
 const Point2D *texcoordArray, Vector4D *tangentArray)

{
// Allocate temporary storage for tangents and bitangents and initialize to zeros.
Vector3D *tangent = new Vector3D[vertexCount * 2];
Vector3D *bitangent = tangent + vertexCount;
for (int32 i = 0; i < vertexCount; i++)
{

tangent[i].Set(0.0F, 0.0F, 0.0F);
bitangent[i].Set(0.0F, 0.0F, 0.0F);

}

// Calculate tangent and bitangent for each triangle and add to all three vertices.
for (int32 k = 0; k < triangleCount; k++)
{

int32 i0 = triangleArray[k].index[0];
int32 i1 = triangleArray[k].index[1];
int32 i2 = triangleArray[k].index[2];
const Point3D& p0 = vertexArray[i0];
const Point3D& p1 = vertexArray[i1];
const Point3D& p2 = vertexArray[i2];
const Point2D& w0 = texcoordArray[i0];
const Point2D& w1 = texcoordArray[i1];
const Point2D& w2 = texcoordArray[i2];

Vector3D e1 = p1 − p0, e2 = p2 − p0;
float x1 = w1.x − w0.x, x2 = w2.x − w0.x;
float y1 = w1.y − w0.y, y2 = w2.y − w0.y;

float r = 1.0F / (x1 * y2 − x2 * y1);
Vector3D t = (e1 * y2 − e2 * y1) * r;
Vector3D b = (e2 * x1 − e1 * x2) * r;

tangent[i0] += t;
tangent[i1] += t;
tangent[i2] += t;
bitangent[i0] += b;
bitangent[i1] += b;
bitangent[i2] += b;

}

// Orthonormalize each tangent and calculate the handedness.

6 Chapter 7 Shading

for (int32 i = 0; i < vertexCount; i++)
{

const Vector3D& t = tangent[i];
const Vector3D& b = bitangent[i];
const Vector3D& n = normalArray[i];
tangentArray[i].xyz() = Normalize(Reject(t, n));
tangentArray[i].w = (Dot(Cross(t, b), n) > 0.0F) ? 1.0F : −1.0F;

}

delete[] tangent;
}

Figure 7.12. (a) A character model uses texture mapping techniques that require a tangent
frame. (b) �e normal vector corresponding to each vertex is shown as a green line starting
at the vertex’s position. (c) �e tangent vector is shown for each vertex, and it is aligned to
the x direction of the texture map at the vertex position.

7.6 Bump Mapping

Bump mapping is a technique that gives the surface of a model the appearance of
having much greater geometric detail than is actually present in the triangle mesh.
It works by using a special type of texture map call a normal map to assign a dif-
ferent normal vector to each point on a surface. When shading calculations account

7.6 Bump Mapping 7

for these finely detailed normal vectors in addition to the smoothly interpolated
geometric normal, it produces the illusion that the surface varies in height even
though the triangles we render are still perfectly flat. �is happens because the
brightness of the reflected light changes at a high frequency, causing the surface to
appear as if it were bumpy, and this is where the term bump mapping comes from.
Because it uses a normal map, bump mapping is often called normal mapping, and
the two terms can be used interchangeably. Figure 7.13 shows an example in which
a wall is rendered as a flat surface having a constant normal vector and is rendered
again with the varying normal vectors produced by bump mapping. �e difference
is already pretty remarkable, but we will be able to extend the concept even further
with the addition of parallax and horizon mapping in the next two sections.

Figure 7.13. (a) A flat wall is rendered without bump mapping, so it has a constant normal vector
across its surface. (b) �e same wall is rendered with bump mapping, and the normal vector is mod-
ified by the vectors stored in a normal map. In both images, the direction to the light points toward
the upper-right corner.

7.6.1 Normal Map Construction
Each texel in a normal map contains a unit-length normal vector whose coordinates
are expressed in tangent space. �e normal vector ()0, 0,1 corresponds to a smooth
surface because it is parallel to the direction pointing directly along the interpolated
normal vector n in object space. Any other tangent-space normal vector represents
a deviation from the smooth surface due to the presence of geometric detail.
�ough it is possible to generate a normal map based on some mathematical de-
scription of a surface, most normal maps are created by calculating slopes in a
height field. A single-channel height map is typically supplied, and the values it

(a) (b)

8 Chapter 7 Shading

contains correspond to the heights of the detailed geometry above a flat surface.
For example, the height map that was used to create the normal map for the wall
in Figure 7.13 is shown as a grayscale image in Figure 7.14(a).
 To calculate the normal vector for a single texel in the normal map, we first
apply central differencing to calculate slopes in the x and y directions. �e values
in the height map are usually interpreted as numbers in the range []0,1 , so they
must be scaled by some constant factor to stretch them out into the full range of
heights that are intended to be covered. Using a scale factor of s means that the
maximum height is s times the width of a single texel. Let the function (),h i j
represent the value, in the range []0,1 , stored in the height map at the coordinates
(),i j . �e two slopes xd and yd are then given by

() ()[]

() ()[]

Δ 1, 1,
Δ 2
Δ , 1 , 1
Δ 2

x

y

z sd h i j h i j
x
z sd h i j h i j
y

= = + − −

= = + − − . (7.41)

At the edges of the height map, care must be taken to either clamp the coordinates
or wrap them around to the opposite side of the image, depending on the intended
wrapping mode of the resulting normal map.
 Once the slopes have been determined, we can express directions xu and yu
that are tangent to the height field along the x and y axes as

()1, 0,x xd=u and ()0,1,y yd=u . (7.42)

Since these are independent directions in the height map’s tangent plane, the nor-
mal vector m can be calculated with the cross product

() ()
2 2

, ,1
nrm .

1
x y

x y

x y

d d

d d

− −
= × =

+ +
m u u (7.43)

�is is the value that gets stored in the normal map. We use the letter m to avoid
confusion with the object-space normal vector n defined at each vertex. �e code
shown in Listing 7.5 uses Equation (7.43) to construct a normal map from a height
map that has already been scaled by the factor of s appearing in Equation (7.41).
At the edges of the height map, this code calculates differences by wrapping around
to the opposite side.

7.6 Bump Mapping 9

(a) (b)

Figure 7.14. (a) A single-channel image contains a height map for a stone wall. Brighter values
correspond to greater heights. (b) �e corresponding normal map contains the vectors calculated by
Equation (7.43) with a scale of 24s = . �e components have been remapped to the range []0,1 .

 In the early days of GPU bump mapping, the three components of the normal
vector had to be stored in a texture map whose color channels could hold values in
the range []0,1 . Since the x and y components of m can be any values in the range
[]1, 1− + , they had to be remapped to the range []0,1 by calculating 1 1

2 2r x= + for
the red channel and 1 1

2 2g y= + for the green channel. Even though the z component
of m is always positive (because normal vectors always point out of the surface),
the same mapping was applied to it as well for the blue channel. When a normal
vector encoded in this way is fetched from a texture map, the GPU performs the
reverse mapping back to the range []1, 1− + by multiplying by two and subtracting
one. Because the normal vectors are shortened a little by linear interpolation when
they are fetched from a texture map, they should be renormalized in the pixel
shader. �e normal map shown in Figure 7.14(b) uses this encoding scheme. �e
fact that the blue channel always contains values in the range []1

2 ,1 gives it the
characteristic purple tint that normal maps are known for having.
 With the widespread availability of a much larger set of texture formats, we
have better options. A texture map can have signed channels that store values in
the range []1, 1− + , so we no longer need to remap to the range []0,1 . To save space,
we can take advantage of two-channel formats by storing only the x and y compo-
nents of a normal vector m. After these are fetched from a texture map in the pixel
shader, we can reconstitute the z component by calculating

10 Chapter 7 Shading

2 21z x ym m m= − − (7.44)

under the assumption that m has unit length and zm is positive. �is method for
storing normal vectors works well with compressed texture formats that support
two uncorrelated channels. Equation (7.44) is implemented in Listing 7.6.

Listing 7.5. �is function constructs a normal map corresponding to the scaled height map having
power-of-two dimensions width × height specified by heightMap. Normal vectors are written to
the buffer supplied by normalMap, which must be large enough to hold width × height values.

void ConstructNormalMap(const float *heightMap, Vector3D *normalMap,
 int32 width, int32 height)

{
for (int32 y = 0; y < height; y++)
{

int32 ym1 = (y − 1) & (height − 1), yp1 = (y + 1) & (height − 1);

const float *centerRow = heightMap + y * width;
const float *upperRow = heightMap + ym1 * width;
const float *lowerRow = heightMap + yp1 * width;

for (int32 x = 0; x < width; x++)
{

int32 xm1 = (x − 1) & (width − 1), xp1 = (x + 1) & (width − 1);

// Calculate slopes.
float dx = (centerRow[xp1] − centerRow[xm1]) * 0.5F;
float dy = (lowerRow[x] − upperRow[x]) * 0.5F;

// Normalize and clamp.
float nz = 1.0F / sqrt(dx * dx + dy * dy + 1.0F);
float nx = fmin(fmax(−dx * nz, −1.0F), 1.0F);
float ny = fmin(fmax(−dy * nz, −1.0F), 1.0F);
normalMap[x].Set(nx, ny, nz);

}

normalMap += width;
}

}

7.6 Bump Mapping 11

Listing 7.6. �is pixel shader function fetches the x and y components of a normal vector from the
2D texture map specified by normalMap at the texture coordinates given by texcoord. �e z com-
ponent of the normal vector is reconstituted with Equation (7.44).

uniform Texture2D normalMap;

float3 FetchNormalVector(float2 texcoord)
{

float2 m = texture(normalMap, texcoord).xy;
return (float3(m, sqrt(1.0 − m.x * m.x − m.y * m.y)));

}

7.6.2 Rendering with Normal Maps

To shade a surface that has a normal map applied to it, we perform the same cal-
culations that we would perform without a normal map involving the view direc-
tion v, light direction l, and halfway vector h. �e difference is that we no longer
take any dot products with the interpolated normal vector n because it is replaced
by a normal vector m fetched from a normal map. Before we can take dot products
with m, though, we have to do something about the fact that it is not expressed in
the same coordinate system as v and l. We need to either transform v and l into
tangent space to match m or transform m into object space to match v and l.
 To transform any vector u from object space to tangent space, we multiply it
by the matrix T

tangentM given by Equation (7.32). �e rows of this matrix are the per-
vertex tangent t, bitangent b, and normal n, so the components of u simply become
⋅t u, ⋅b u, and ⋅n u in tangent space. �is is applied to the object-space view direc-

tion v and light direction l by the vertex shader function shown in Listing 7.7 after
it calculates the bitangent vector with Equation (7.40). �e resulting tangent-space
view direction tangentv and light direction tangentl should then be output by the vertex
shader so their interpolated values can be used in the pixel shader.
 Shading can also be performed in object space by fetching the vector m from
a normal map and then multiplying it by the matrix tangentM in the pixel shader. �e
columns of tangentM are the vectors t, b, and n, so the transformed normal vector

objectm is given by

object x y zm m m= + +m t b n. (7.45)

To perform this operation in the pixel shader, we need to interpolate the per-vertex
normal and tangent vectors in addition to the view direction v and the light direc-
tion l, which now remain in object space. �e handedness σ of the tangent frame

12 Chapter 7 Shading

Listing 7.7. �is vertex shader function calculates the tangent-space view direction tangentv and light
direction tangentl for a vertex having object-space attributes position, normal, and tangent and re-
turns them in vtan and ltan. �e w coordinate of the tangent contains the handedness σ of the
tangent frame used in the calculation of the bitangent vector.

uniform float3 cameraPosition; // Object-space camera position.
uniform float3 lightPosition; // Object-space light position.

void CalculateTangentSpaceVL(float3 position, float3 normal, float4 tangent,
 out float3 vtan, out float3 ltan)

{
float3 bitangent = cross(normal, tangent.xyz) * tangent.w;
float3 v = cameraPosition − position;
float3 l = lightPosition − position;
vtan = float3(dot(tangent, v), dot(bitangent, v), dot(normal, v));
ltan = float3(dot(tangent, l), dot(bitangent, l), dot(normal, l));

}

also needs to be passed from the vertex shader to the pixel shader. Since handed-
ness is always constant over a triangle, it can be flat interpolated to save some
computation. After interpolation, the normal and tangent vectors may not have unit
length, and it’s possible that they are no longer perpendicular. To correct for this,
we have to orthonormalize them in the pixel shader before we calculate the bi-
tangent vector with Equation (7.40). �e pixel shader function shown in Listing 7.8
carries out these steps to construct the tangent frame. It then applies Equation
(7.45) to transform a normal vector m fetched from a normal map into object space.

Listing 7.8. �is pixel shader function fetches a normal vector from the 2D texture map specified
by normalMap at the texture coordinates given by texcoord using the function in Listing 7.6. It then
transforms it into object space by multiplying it by the matrix tangentM . �e interpolated object-space
normal, tangent, and handedness values are given by normal, tangent, and sigma.

uniform Texture2D normalMap;

float3 FetchObjectNormalVector(float2 texcoord, float3 normal, float3 tangent,
 float sigma)

{
float3 m = FetchNormalVector(texcoord);
float3 n = normalize(normal);
float3 t = normalize(tangent − n * dot(tangent, n));
float3 b = cross(normal, tangent) * sigma;
return (t * m.x + b * m.y + n * m.z);

}

7.6 Bump Mapping 13

7.6.3 Blending Normal Maps
�ere are times when we might want to combine two or more normal maps in the
same material. For example, a second normal map could add finer details to a base
normal map in a high-quality version of the material. It’s also possible that texture
coordinate animation is causing two normal maps to move in different directions,
as commonly used to produce interacting ripples on a water surface. We might also
want to smoothly transition between two different normal maps. In general, we
would like to have a function ()blend 1 2, , ,f a bm m that calculates the weighted sum
of two normal vectors 1m and 2m with the weights a and b. �e sum must behave
as if the original height maps from which 1m and 2m were derived had been added
together with the same weights a and b, allowing a new normal vector to be calcu-
lated with Equation (7.43). We cannot simply calculate 1 2a b+m m because it does
not satisfy this requirement. In particular, if one height map contains all zeros, then
it should have no effect on the sum, but blending the normal vectors directly would
cause the results to be skewed toward the vector ()0, 0,1 .
 Fortunately, we can easily recover the slopes xd and yd to which a normal vec-
tor corresponds. All we have to do is scale a normal vector by the reciprocal of its
z coordinate to match the unnormalized vector in the numerator of Equation (7.43),
effectively undoing the previous normalization step. �ese slopes are nothing more
than scaled differences of heights, so they are values that we can blend directly.
�is leads us to the blending function

() 1 2 1 2
blend 1 2

1 2 1 2
, , , nrm , ,1 ,x x y yf a b a b a b

z z z z
 = + + 
 

m m (7.46)

where ()1 1 1 1, ,x y z=m and ()2 2 2 2, ,x y z=m .
 By setting 1a t= − and b t= , we can smoothly transition from one normal map
to another as the parameter t goes from zero to one. To combine two normal maps
in such a way that they have an additive effect without diminishing the apparent
size of the bumps encoded in either one, we apply Equation (7.46) with the weights

1a b= = . Since the result is normalized, we can multiply all three components by
1 2z z , in which case the additive blending function is given by

() ()add 1 2 2 1 1 2 2 1 1 2 2 1, nrm , ,f z x z x z y z y z z= + +m m . (7.47)

�e weights a and b do not need to be positive. Using a negative weight for one
normal map causes it to be subtracted from the other so that its bumps appear to
be inverted.

14 Chapter 7 Shading

7.7 Parallax Mapping

Plain bump mapping has its limitations. While it often looks good when a surface
is viewed from a nearly perpendicular direction, the illusion of bumpiness quickly
breaks down as the angle between the surface and the viewing direction gets
smaller. �is is due to the fact that the same texels are still rendered at the same
locations on the surface from all viewing directions, betraying the flatness of the
underlying geometry. If the surface features encoded in the normal map actually
had real height, then some parts of the color texture would be hidden from view by
the bumps, and other parts would be more exposed, depending on the perspective.
A technique called parallax mapping shifts the texels around a little bit to greatly
improve the illusion that a surface has varying height.
 Parallax mapping works by first considering the height h and normal vector n
mapped to each point on a surface. As shown in Figure 7.15, these values can be
used to establish a plane []| dn that is tangent to the bumpy surface at that point.
�is plane serves as a local approximation to the surface that can be used to calcu-
late a texture coordinate offset that accounts for the viewing direction and produces
the appearance of parallax. Since we need only the offset, we can assume that the
original texture coordinates are ()0, 0 for simplicity. �e value of d is then deter-
mined by requiring that the point ()0, 0, h lies on the plane, from which we obtain

zd n h= − . (7.48)

For a particular tangent-space view direction v, the point where the ray t+ v
intersects the plane []| dn is approximately the point  that would be visible from
the direction v if the surface actually had the height h at the point sampled on the
flat geometry. �e parameter t is calculated by solving the equation

[] ()| 0d t⋅ + =n v , (7.49)

and the point  is thus given by

zn h
= +

⋅
v

n v
  . (7.50)

�e x and y coordinates of  provide the offset that should be added to the original
texture coordinates. All texture maps used by the pixel shader, including the nor-
mal map, are then resampled at these new coordinates that include the parallax
shift.

7.7 Parallax Mapping 15

Figure 7.15. �e height h and normal vector n sampled at the point  are used to construct
a plane that approximates the bumpy surface shown by the blue line. For a tangent-space
view vector v, the parallax offset is given by the x and y coordinates of the point  where
the ray t+ v intersects the plane.

 In practice, the offset given by Equation (7.50) is problematic because the dot
product ⋅n v can be close to zero, or it can even be negative. �is means that the
offset can produce an arbitrarily large parallax shift toward or away from the
viewer when n and v are nearly perpendicular. �e usual solution to this problem,
even though it has little geometric significance, is to gradually reduce the offset as
⋅n v becomes small by simply multiplying by ⋅n v! �is effectively drops the divi-

sion from Equation (7.50) and gives us the new offset formula

.xy z xyn h= v (7.51)

�is offset generally produces good results, like those shown in Figure 7.16, and it
is very cheap to calculate. Because we are no longer dividing out their magnitudes,
however, we must ensure that both n and v have unit length before applying this
formula.
 �e value of zn h in Equation (7.51) is precomputed for every texel in the nor-
mal map and stored in a separate parallax map having a single channel. To mini-
mize storage requirements, an 8-bit signed format can be used in which texel
values fall in the range []1, 1− + . Unsigned values h from the original height map
are remapped to this range by calculating 2 1h − before multiplying by zn and stor-
ing the results in the parallax map. A signed format is chosen so that texture coor-
dinates are shifted both toward and away from the viewer when the full range of
heights is well utilized. An original height of 1 2h = corresponds to no offset, larger

16 Chapter 7 Shading

Figure 7.16. Two flat surfaces are rendered with only normal mapping in the left column. A parallax
shift has been applied to the same surfaces in the right column. Texture coordinate offsets are cal-
culated using Equation (7.51) with four iterations.

heights cause a surface to appear raised, and smaller values cause a surface to ap-
pear depressed. In the pixel shader, the sampled values of zn h are multiplied by 1 2
to account for the doubling when they were converted to the signed format. �ey
must also be multiplied by the same scale used when the normal map was gener-
ated so that the heights used in parallax mapping are the same as those that were
used to calculate the per-texel normal vectors.
 For bump maps containing steep changes in height, offsets given by Equation
(7.51) can still be too large because the tangent plane becomes a poorer approxi-
mation as the size of the offset increases. Shifted color samples taken too far away
from areas having a steep slope often produce visible artifacts. �is problem can
be eliminated in most cases by using k iterations and multiplying the offset by 1 k
each time. A new value of zn h is fetched from the parallax map for each iteration,
allowing each incremental parallax shift to be based on a different approximating
plane.

7.7 Parallax Mapping 17

 �e pixel shader code shown in Listing 7.9 implements parallax mapping with
Equation (7.51), and it uses four iterations to mitigate the appearance of artifacts
produced by steep slopes. �e two-component scale value u passed to the function
is given by

,
2 2x y

s s
kr kr

 
=  
 

u , (7.52)

and it accounts for several things that can be incorporated into a precalculated
product. First, it includes the height scale s that was originally used to construct
the normal map. Second, since the heights are measured in units of texels, the par-
allax offsets must be normalized to the actual dimensions (,r rx y) of the height map,
so the scale is multiplied by the reciprocals of those dimensions. (�is is the only
reason why there are two components.) �ird, the scale includes a factor of 1 2 to
account for the multiplication by two when the heights were converted from un-
signed to signed values. Fourth, the scale includes a factor of 1 k, where k is the
number of iterations, so that each iteration contributes its proper share of the final
result. Finally, the scale may include an extra factor not shown in Equation (7.52)
that exaggerates the parallax effect.

Listing 7.9. �is pixel shader function applies parallax mapping to the texture coordinates given by
texcoord using four iterations and returns the final result. �e texture specified by parallaxMap
holds the signed values zn h belonging to the parallax map. �e vdir parameter contains the tangent-
space view direction, which must be normalized to unit length. �e value of scale is given by
Equation (7.52), where 4k = in this code.

uniform Texture2D parallaxMap;

float2 ApplyParallaxOffset(float2 texcoord, float3 vdir, float2 scale)
{

float2 pdir = vdir.xy * scale;
for (int i = 0; i < 4; i++)
{

// Fetch n.z * h from the parallax map.
float parallax = texture(parallaxMap, texcoord).x;
texcoord += pdir * parallax;

}

return (texcoord);
}

	7.5 Tangent Space
	7.6 Bump Mapping
	7.6.1 Normal Map Construction
	7.6.2 Rendering with Normal Maps
	7.6.3 Blending Normal Maps

	7.7 Parallax Mapping
	Book - Copy.pdf
	Title
	Contents
	Preface
	Mathematical Conventions
	Acknowledgements

	5-GraphicsProcessing
	5.1 Pixels
	5.2 Color Science
	5.2.1 The CIE RGB Color Space
	5.2.2 The CIE XYZ Color Space
	5.2.3 The sRGB Color Space

	5.3 Gamma Correction
	5.4 World Structure
	5.4.1 Coordinate Spaces
	5.4.2 Transform Hierarchy
	5.4.3 Vertex Transformations

	5.5 The Graphics Pipeline
	5.5.1 Geometry Processing
	5.5.2 Pixel Processing
	Clipping
	Face culling
	Rasterization
	Interpolation
	Multisampling

	5.5.3 Frame Buffer Operations
	Depth test
	Stencil test
	Depth bounds test
	Blending

	Exercises for Chapter 5

	6-Projections
	6.1 The View Frustum
	6.2 Perspective-Correct Interpolation
	6.3 Projection Matrices
	6.3.1 Perspective Projection Matrices
	6.3.2 Infinite Projection Matrices
	6.3.3 Projected Depth Precision
	6.3.4 Orthographic Projections
	6.3.5 Frustum Plane Extraction

	6.4 Oblique Clipping Planes
	Exercises for Chapter 6

	7-Shading
	7.1 Rendering Fundamentals
	7.1.1 Luminance
	7.1.2 The Rendering Equation

	7.2 Diffuse Reflection
	7.3 Specular Reflection
	7.4 Texture Mapping
	7.4.1 Texture Coordinates
	7.4.2 Conventional Texture Mapping
	7.4.3 Cube Texture Mapping

	7.5 Tangent Space
	7.6 Bump Mapping
	7.6.1 Normal Map Construction
	7.6.2 Rendering with Normal Maps
	7.6.3 Blending Normal Maps

	7.7 Parallax Mapping
	7.8 Horizon Mapping
	7.8.1 Horizon Map Construction
	7.8.2 Rendering with Horizon Maps

	Exercises for Chapter 7
	7-Shading-new.pdf
	7.8 Horizon Mapping
	7.8.3 Ambient Occlusion Mapping

	8-LightingShadows
	8.1 Light Sources
	8.1.1 Point Lights
	8.1.2 Spot Lights
	8.1.3 Infinite Lights

	8.2 Extent Optimization
	8.2.1 Scissor Rectangle
	8.2.2 Depth Bounds

	8.3 Shadow Maps
	8.3.1 2D Shadow Maps
	8.3.2 Cube Shadow Maps
	8.3.3 Cascaded Shadow Maps
	8.3.4 Shadow Depth Offset

	8.4 Stencil Shadows
	8.4.1 Rendering Algorithm
	8.4.2 Variant Selection
	8.4.3 Shadow Volumes
	8.4.4 Optimizations

	8.5 Fog
	8.5.1 Absorption and Scattering
	8.5.2 Halfspace Fog

	Exercises for Chapter 8

	9-VisibilityOcclusion
	9.1 Polygon Clipping
	9.2 Polyhedron Clipping
	9.3 Bounding Volumes
	9.3.1 Bounding Spheres
	9.3.2 Bounding Boxes

	9.4 Frustum Culling
	9.4.1 Visibility Regions
	9.4.2 Sphere Visibility
	9.4.3 Box Visibility

	9.5 Light Culling
	9.6 Shadow Culling
	9.7 Portal Systems
	9.7.1 Zones and Portals
	9.7.2 Light Regions

	9.8 Occluders
	9.9 Fog Occlusion
	Exercises for Chapter 9

	10-AdvancedRendering
	10.1 Decals
	10.2 Billboards
	10.2.1 Spherical Billboards
	10.2.2 Cylindrical Billboards
	10.2.3 Polyboards
	10.2.4 Trimming

	10.3 The Structure Buffer
	10.4 Volumetric Effects
	10.4.1 Halos
	10.4.2 Shafts

	10.5 Ambient Occlusion
	10.5.1 The Occlusion Buffer
	10.5.2 Depth-Aware Blurring

	10.6 Atmospheric Shadowing
	10.6.1 The Atmosphere Buffer
	10.6.2 Sample Randomization
	10.6.3 Anisotropic Scattering
	10.6.4 Implementation

	10.7 Motion Blur
	10.7.1 The Velocity Buffer
	10.7.2 Image Postprocessing

	10.8 Isosurface Extraction
	10.8.1 Marching Cubes
	10.8.2 Preferred Polarity
	10.8.3 Implementation

	Exercises for Chapter 10

	Index
	8-LightingShadows-new.pdf
	8.1 Light Sources
	8.1.1 Point Lights
	8.1.2 Spot Lights
	8.1.3 Infinite Lights

	8.2 Extent Optimization
	8.2.1 Scissor Rectangle
	8.2.2 Depth Bounds

	8.3 Shadow Maps
	8.3.1 2D Shadow Maps
	8.3.2 Cube Shadow Maps
	8.3.3 Cascaded Shadow Maps
	8.3.4 Shadow Depth Offset

	8.4 Stencil Shadows
	8.4.1 Rendering Algorithm
	8.4.2 Variant Selection
	8.4.3 Shadow Volumes
	8.4.4 Optimizations

	8.5 Fog
	8.5.1 Absorption and Scattering
	8.5.2 Halfspace Fog

	Exercises for Chapter 8

	8-LightingShadows-new.pdf
	8.1 Light Sources
	8.1.1 Point Lights
	8.1.2 Spot Lights
	8.1.3 Infinite Lights

	8.2 Extent Optimization
	8.2.1 Scissor Rectangle
	8.2.2 Depth Bounds

	8.3 Shadow Maps
	8.3.1 2D Shadow Maps
	8.3.2 Cube Shadow Maps
	8.3.3 Cascaded Shadow Maps
	8.3.4 Shadow Depth Offset

	8.4 Stencil Shadows
	8.4.1 Rendering Algorithm
	8.4.2 Variant Selection
	8.4.3 Shadow Volumes
	8.4.4 Optimizations

	8.5 Fog
	8.5.1 Absorption and Scattering
	8.5.2 Halfspace Fog

	Exercises for Chapter 8

	10-AdvancedRendering-new.pdf
	10.1 Decals
	10.2 Billboards
	10.2.1 Spherical Billboards
	10.2.2 Cylindrical Billboards
	10.2.3 Polyboards
	10.2.4 Trimming

	10.3 The Structure Buffer
	10.4 Volumetric Effects
	10.4.1 Halos
	10.4.2 Shafts

	10.5 Ambient Occlusion
	10.5.1 The Occlusion Buffer
	10.5.2 Depth-Aware Blurring

	10.6 Atmospheric Shadowing
	10.6.1 The Atmosphere Buffer
	10.6.2 Sample Randomization
	10.6.3 Anisotropic Scattering
	10.6.4 Implementation

	10.7 Motion Blur
	10.7.1 The Velocity Buffer
	10.7.2 Image Postprocessing

	10.8 Isosurface Extraction
	10.8.1 Marching Cubes
	10.8.2 Preferred Polarity
	10.8.3 Implementation

	Exercises for Chapter 10

	9-VisibilityOcclusion-new.pdf
	9.1 Polygon Clipping
	9.2 Polyhedron Clipping
	9.3 Bounding Volumes
	9.3.1 Bounding Spheres
	9.3.2 Bounding Boxes

	9.4 Frustum Culling
	9.4.1 Visibility Regions
	9.4.2 Sphere Visibility
	9.4.3 Box Visibility

	9.5 Light Culling
	9.6 Shadow Culling
	9.7 Portal Systems
	9.7.1 Zones and Portals
	9.7.2 Light Regions

	9.8 Occluders
	9.9 Fog Occlusion
	Exercises for Chapter 9

	9-VisibilityOcclusion-new.pdf
	9.1 Polygon Clipping
	9.2 Polyhedron Clipping
	9.3 Bounding Volumes
	9.3.1 Bounding Spheres
	9.3.2 Bounding Boxes

	9.4 Frustum Culling
	9.4.1 Visibility Regions
	9.4.2 Sphere Visibility
	9.4.3 Box Visibility

	9.5 Light Culling
	9.6 Shadow Culling
	9.7 Portal Systems
	9.7.1 Zones and Portals
	9.7.2 Light Regions

	9.8 Occluders
	9.9 Fog Occlusion
	Exercises for Chapter 9

	9-VisibilityOcclusion-new.pdf
	9.1 Polygon Clipping
	9.2 Polyhedron Clipping
	9.3 Bounding Volumes
	9.3.1 Bounding Spheres
	9.3.2 Bounding Boxes

	9.4 Frustum Culling
	9.4.1 Visibility Regions
	9.4.2 Sphere Visibility
	9.4.3 Box Visibility

	9.5 Light Culling
	9.6 Shadow Culling
	9.7 Portal Systems
	9.7.1 Zones and Portals
	9.7.2 Light Regions

	9.8 Occluders
	9.9 Fog Occlusion
	Exercises for Chapter 9

	8-LightingShadows-insert.pdf
	8.1 Light Sources
	8.1.1 Point Lights
	8.1.2 Spot Lights
	8.1.3 Infinite Lights

	8.2 Extent Optimization
	8.2.1 Scissor Rectangle
	8.2.2 Depth Bounds

	8.3 Shadow Maps
	8.3.1 2D Shadow Maps
	8.3.2 Cube Shadow Maps
	8.3.3 Cascaded Shadow Maps
	8.3.4 Shadow Depth Offset

	8.4 Stencil Shadows
	8.4.1 Rendering Algorithm
	8.4.2 Variant Selection
	8.4.3 Shadow Volumes
	8.4.4 Optimizations

	8.5 Fog
	8.5.1 Absorption and Scattering
	8.5.2 Halfspace Fog

	Exercises for Chapter 8

	8-LightingShadows-insert.pdf
	8.1 Light Sources
	8.1.1 Point Lights
	8.1.2 Spot Lights
	8.1.3 Infinite Lights

	8.2 Extent Optimization
	8.2.1 Scissor Rectangle
	8.2.2 Depth Bounds

	8.3 Shadow Maps
	8.3.1 2D Shadow Maps
	8.3.2 Cube Shadow Maps
	8.3.3 Cascaded Shadow Maps
	8.3.4 Shadow Depth Offset

	8.4 Stencil Shadows
	8.4.1 Rendering Algorithm
	8.4.2 Variant Selection
	8.4.3 Shadow Volumes
	8.4.4 Optimizations

	8.5 Fog
	8.5.1 Absorption and Scattering
	8.5.2 Halfspace Fog

	Exercises for Chapter 8

	9-VisibilityOcclusion-new.pdf
	9.1 Polygon Clipping
	9.2 Polyhedron Clipping
	9.3 Bounding Volumes
	9.3.1 Bounding Spheres
	9.3.2 Bounding Boxes

	9.4 Frustum Culling
	9.4.1 Visibility Regions
	9.4.2 Sphere Visibility
	9.4.3 Box Visibility

	9.5 Light Culling
	9.6 Shadow Culling
	9.7 Portal Systems
	9.7.1 Zones and Portals
	9.7.2 Light Regions

	9.8 Occluders
	9.9 Fog Occlusion
	Exercises for Chapter 9

	9-VisibilityOcclusion.pdf
	9.1 Polygon Clipping
	9.2 Polyhedron Clipping
	9.3 Bounding Volumes
	9.3.1 Bounding Spheres
	9.3.2 Bounding Boxes

	9.4 Frustum Culling
	9.4.1 Visibility Regions
	9.4.2 Sphere Visibility
	9.4.3 Box Visibility

	9.5 Light Culling
	9.6 Shadow Culling
	9.7 Portal Systems
	9.7.1 Zones and Portals
	9.7.2 Light Regions

	9.8 Occluders
	9.9 Fog Occlusion
	Exercises for Chapter 9

	9-VisibilityOcclusion - Copy.pdf
	9.1 Polygon Clipping
	9.2 Polyhedron Clipping
	9.3 Bounding Volumes
	9.3.1 Bounding Spheres
	9.3.2 Bounding Boxes

	9.4 Frustum Culling
	9.4.1 Visibility Regions
	9.4.2 Sphere Visibility
	9.4.3 Box Visibility

	9.5 Light Culling
	9.6 Shadow Culling
	9.7 Portal Systems
	9.7.1 Zones and Portals
	9.7.2 Light Regions

	9.8 Occluders
	9.9 Fog Occlusion
	Exercises for Chapter 9

	Preface.pdf
	Mathematical Conventions
	Acknowledgements

