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7.5  Tangent Space 

Up to this point, our shading calculations have been carried out in object space. 
More advanced techniques, some of which have become standard fixtures in game 
engines, are able to make use of texture maps that store finely detailed geometric 
information instead of colors. �e most common example is the normal mapping 
technique in which a texture map contains vector data, and this is introduced in the 
next section. �e numerical values stored in this kind of texture map are expressed 
in the coordinate system of the texture map itself so that the geometric details are 
independent of any particular model. �is allows a geometric texture map to be 
applied to any triangle mesh without having to account for the object-space coor-
dinate system used by its vertices. 
 In the coordinate system of a texture map, the x and y axes are aligned to the 
horizontal and vertical directions in the 2D image, and the z axis points upward out 
of the image plane, as shown in Figure 7.11(a). If the origin of the texture map is 
located in the upper-left corner, then this constitutes a left-handed coordinate sys-
tem. It is also possible to flip the texture upside down and put the origin in the 
lower-left corner to create a right-handed coordinate system. Either choice works 
fine because we will need to account for the handedness inherent in the mapping 
of the texture map to a surface anyway. 
 In order to perform shading calculations that use geometric information stored 
in a texture map, we need a way to transform between the coordinate system of the 

 
Figure 7.11. (a) In the coordinate system of a texture map, the x and y axes are aligned to 
the texel image, and the z axis points upward out of the image plane. (b) Each vertex in a 
triangle mesh has a normal vector n and a perpendicular tangent vector t, and both vectors 
form a smooth field over the entire model. �e direction that the tangent vector points 
within the tangent plane is determined by the orientation of the texture map at each vertex. 
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texture map and object space. �is is done by identifying the directions in object 
space that correspond to the coordinate axes of the texture map. �ese object-space 
directions are not constant, but vary from triangle to triangle. For a single triangle, 
we can think of the texture map as lying in the triangle’s plane with its x and y axes 
oriented in the directions that are aligned to the ( ),u v  texture coordinates assigned 
to the triangle’s vertices. �e z axis of the texture map points directly out of the 
plane, so it is aligned with the triangle’s normal vector in object space. �e x and 
y axes of the texture map point along directions that are tangent to the surface in 
object space, and at least one of these vectors needs to be calculated ahead of time. 
 As with normal vectors, we calculate an average unit-length tangent vector t 
for each vertex in a triangle mesh. �is lets us create a smooth tangent field on the 
surface of a model, as shown in Figure 7.11(b). Although it may not be strictly true 
for the specific texture mapping applied to a model, we assume that the two tangent 
directions are perpendicular to each other, so a second tangent direction b called 
the bitangent vector can be calculated with a cross product. �e three vectors t, b, 
and n form the basis of the tangent frame at each vertex, and the coordinate space 
in which the x, y, and z axes are aligned to these directions is called tangent space. 
We can transform vectors from tangent space to object space using the 3 3×  matrix 

tangentM  given by 

 tangent

 ↑ ↑ ↑
 =  
 ↓ ↓ ↓ 

M t b n , (7.31) 

which has the vectors t, b, and n as its columns. Since this matrix is orthogonal, 
the reverse transformation from object space to tangent space is the transpose 

 

T

T T
tangent

T

← → 
 = ← → 
 ← → 

t
M b

n
, (7.32) 

where the vectors t, b, and n form the rows. �e name TBN matrix is often used to 
refer to either one of these matrices. 
 Applying a little linear algebra to the vertex positions and their associated tex-
ture coordinates lets us calculate the tangent field for a triangle mesh. Let 0 , 1 , 
and 2  be the three vertices of a triangle, wound in counterclockwise order, and let 
( ),i iu v  represent the texture coordinates associated with the vertex i . �e values 
of u and v correspond to distances along the axes t and b that are aligned to the x 
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and y directions of the texture map. �is means that we can express the difference 
between two points with known texture coordinates as 

 ( ) ( )i j i j i ju u v v− = − + −t b  . (7.33) 

To determine what the vectors t and b are, we can form a system of equations using 
differences between the vertices on two of the triangle’s edges. After making the 
definitions 

 
( ) ( )
( ) ( )

1 1 0 1 1 1 0 1 0

2 2 0 2 2 2 0 2 0

, , , ,
, , , ,

x y u u v v
x y u u v v

= − = − −

= − = − −

e
e

 
   (7.34) 

we can write this system very compactly as 

 
1 1 1

2 2 2

x y
x y

= +

= +

e t b
e t b. (7.35) 

An equivalent matrix equation is 

 1 2
1 2

1 2

x x
y y

   ↑ ↑ ↑ ↑     =          ↓ ↓ ↓ ↓   

e e t b , (7.36) 

where 1e , 2e , t and b are all column vectors. �is equation is readily solved by 
inverting the 2 2×  matrix of coefficients on the right side to produce 

 
2 2

1 2
1 11 2 2 1

1 .
y x
y xx y x y

   ↑ ↑ ↑ ↑ −    =      −−     ↓ ↓ ↓ ↓   

t b e e  (7.37) 

 To calculate an average tangent vector and bitangent vector at each vertex, we 
maintain sums of the vectors produced for each triangle and later normalize them. 
When values of t and b are calculated with Equation (7.37), they are added to the 
sums for the three vertices referenced by the triangle. �e results are usually not 
exactly perpendicular, but unless the texture mapping is skewed to a significant 
degree, they should be close to perpendicular. We can nudge them the rest of the 
way by applying Gram-Schmidt orthonormalization. First, assuming the vertex 
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normal vector n has unit length, we make sure the vertex tangent vector t is per-
pendicular to n by replacing it with 

 ( )( )nrm⊥ = − ⋅t t t n n  (7.38) 

using the rejection operation described in Section 1.6. (We use the subscript ⊥ 
simply to mean that the vector has been orthonormalized.) �e vertex bitangent 
vector b is then made perpendicular to both t and n by calculating 

 ( ) ( )( )nrm⊥ ⊥ ⊥= − ⋅ − ⋅b b b n n b t t . (7.39) 

�e vectors ⊥t , ⊥b , and n now form a set of unit-length orthogonal axes for the 
tangent frame at a vertex. Code that implements this entire process is provided in 
Listing 7.4. 
 Since the vectors are orthogonal, it is not necessary to store all three of the 
vectors ⊥t , ⊥b , and n for each vertex. Just the normal vector and the tangent vector 
will always suffice, but we do need one additional bit of information. �e tangent 
frame can form either a right-handed or left-handed coordinate system, and which 
one is given by the sign of ( )tangentdet M . Calling the sign of this determinant σ , we 
can reconstitute the bitangent with the cross product 

 ( ) ,σ⊥ ⊥= ×b n t  (7.40) 

and then only the normal and tangent need to be supplied as vertex attributes. An 
example showing the normal field and tangent field for a character model is pro-
vided in Figure 7.12. One possible way to communicate the value of σ  to the vertex 
shader is by extending the tangent to a four-component vertex attribute and storing 
σ  in the w coordinate. �is is the method used in Listing 7.4, but a more clever 
approach might encode σ  in the least significant bit of one of the x, y, or z coordi-
nates of the tangent to avoid increasing the size of the vertex data. 
 It is common for there to be discontinuities in a model’s texture mapping, and 
this is in fact unavoidable for anything topologically equivalent to a sphere because 
a continuous nonvanishing tangent field is impossible. In these cases, vertices are 
duplicated along the triangle edges where the discontinuity occurs. �e additional 
vertices have the same positions, but they could have different texture coordinates. 
Because they are indexed separately, their tangent vectors are not averaged, and 
this can lead to a visible boundary where an abrupt change in shading is visible. 
To avoid this, duplicates need to be identified so that their tangents can be averaged 
and set equal to each other, but only if the tangent frames have the same handed-
ness and the tangents are pointing in similar directions. 
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Listing 7.4. �is function calculates the per-vertex tangent vectors for the triangle mesh having 
triangleCount triangles with indices specified by triangleArray and vertexCount vertices with 
positions specified by vertexArray. �e per-vertex normal vectors and texture coordinates are 
given by normalArray and texcoordArray. Tangents are written to tangentArray, which must be 
large enough to hold vertexCount elements. �e determinant of the matrix tangentM  at each vertex is 
stored in the w coordinate of each tangent vector. 

void CalculateTangents(int32 triangleCount, const Triangle *triangleArray, 
   int32 vertexCount, const Point3D *vertexArray, const Vector3D *normalArray, 
   const Point2D *texcoordArray, Vector4D *tangentArray) 

{ 
// Allocate temporary storage for tangents and bitangents and initialize to zeros. 
Vector3D *tangent = new Vector3D[vertexCount * 2]; 
Vector3D *bitangent = tangent + vertexCount; 
for (int32 i = 0; i < vertexCount; i++) 
{ 

tangent[i].Set(0.0F, 0.0F, 0.0F); 
bitangent[i].Set(0.0F, 0.0F, 0.0F); 

} 

// Calculate tangent and bitangent for each triangle and add to all three vertices. 
for (int32 k = 0; k < triangleCount; k++) 
{ 

int32 i0 = triangleArray[k].index[0]; 
int32 i1 = triangleArray[k].index[1]; 
int32 i2 = triangleArray[k].index[2]; 
const Point3D& p0 = vertexArray[i0]; 
const Point3D& p1 = vertexArray[i1]; 
const Point3D& p2 = vertexArray[i2]; 
const Point2D& w0 = texcoordArray[i0]; 
const Point2D& w1 = texcoordArray[i1]; 
const Point2D& w2 = texcoordArray[i2]; 

Vector3D e1 = p1 − p0, e2 = p2 − p0; 
float x1 = w1.x − w0.x, x2 = w2.x − w0.x; 
float y1 = w1.y − w0.y, y2 = w2.y − w0.y; 

float r = 1.0F / (x1 * y2 − x2 * y1); 
Vector3D t = (e1 * y2 − e2 * y1) * r; 
Vector3D b = (e2 * x1 − e1 * x2) * r; 

tangent[i0] += t; 
tangent[i1] += t; 
tangent[i2] += t; 
bitangent[i0] += b; 
bitangent[i1] += b; 
bitangent[i2] += b; 

} 

// Orthonormalize each tangent and calculate the handedness. 
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for (int32 i = 0; i < vertexCount; i++) 
{ 

const Vector3D& t = tangent[i]; 
const Vector3D& b = bitangent[i]; 
const Vector3D& n = normalArray[i]; 
tangentArray[i].xyz() = Normalize(Reject(t, n)); 
tangentArray[i].w = (Dot(Cross(t, b), n) > 0.0F) ? 1.0F : −1.0F; 

} 

delete[] tangent; 
} 

Figure 7.12. (a) A character model uses texture mapping techniques that require a tangent 
frame. (b) �e normal vector corresponding to each vertex is shown as a green line starting 
at the vertex’s position. (c) �e tangent vector is shown for each vertex, and it is aligned to 
the x direction of the texture map at the vertex position. 

7.6  Bump Mapping 

Bump mapping is a technique that gives the surface of a model the appearance of 
having much greater geometric detail than is actually present in the triangle mesh. 
It works by using a special type of texture map call a normal map to assign a dif-
ferent normal vector to each point on a surface. When shading calculations account 
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for these finely detailed normal vectors in addition to the smoothly interpolated 
geometric normal, it produces the illusion that the surface varies in height even 
though the triangles we render are still perfectly flat. �is happens because the 
brightness of the reflected light changes at a high frequency, causing the surface to 
appear as if it were bumpy, and this is where the term bump mapping comes from. 
Because it uses a normal map, bump mapping is often called normal mapping, and 
the two terms can be used interchangeably. Figure 7.13 shows an example in which 
a wall is rendered as a flat surface having a constant normal vector and is rendered 
again with the varying normal vectors produced by bump mapping. �e difference 
is already pretty remarkable, but we will be able to extend the concept even further 
with the addition of parallax and horizon mapping in the next two sections. 

Figure 7.13. (a) A flat wall is rendered without bump mapping, so it has a constant normal vector 
across its surface. (b) �e same wall is rendered with bump mapping, and the normal vector is mod-
ified by the vectors stored in a normal map. In both images, the direction to the light points toward 
the upper-right corner. 

7.6.1  Normal Map Construction 
Each texel in a normal map contains a unit-length normal vector whose coordinates 
are expressed in tangent space. �e normal vector ( )0, 0,1  corresponds to a smooth 
surface because it is parallel to the direction pointing directly along the interpolated 
normal vector n in object space. Any other tangent-space normal vector represents 
a deviation from the smooth surface due to the presence of geometric detail. 
�ough it is possible to generate a normal map based on some mathematical de-
scription of a surface, most normal maps are created by calculating slopes in a 
height field. A single-channel height map is typically supplied, and the values it 

(a) (b) 
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contains correspond to the heights of the detailed geometry above a flat surface. 
For example, the height map that was used to create the normal map for the wall 
in Figure 7.13 is shown as a grayscale image in Figure 7.14(a). 
 To calculate the normal vector for a single texel in the normal map, we first 
apply central differencing to calculate slopes in the x and y directions. �e values 
in the height map are usually interpreted as numbers in the range [ ]0,1 , so they 
must be scaled by some constant factor to stretch them out into the full range of 
heights that are intended to be covered. Using a scale factor of s means that the 
maximum height is s times the width of a single texel. Let the function ( ),h i j  
represent the value, in the range [ ]0,1 , stored in the height map at the coordinates 
( ),i j . �e two slopes xd  and yd  are then given by 

( ) ( )[ ]

( ) ( )[ ]

Δ 1, 1,
Δ 2
Δ , 1 , 1
Δ 2

x

y

z sd h i j h i j
x
z sd h i j h i j
y

= = + − −

= = + − − . (7.41) 

At the edges of the height map, care must be taken to either clamp the coordinates 
or wrap them around to the opposite side of the image, depending on the intended 
wrapping mode of the resulting normal map. 
 Once the slopes have been determined, we can express directions xu  and yu  
that are tangent to the height field along the x and y axes as 

( )1, 0,x xd=u    and   ( )0,1,y yd=u . (7.42) 

Since these are independent directions in the height map’s tangent plane, the nor-
mal vector m can be calculated with the cross product 

( ) ( )
2 2

, ,1
nrm .

1
x y

x y

x y

d d

d d

− −
= × =

+ +
m u u (7.43) 

�is is the value that gets stored in the normal map. We use the letter m to avoid 
confusion with the object-space normal vector n defined at each vertex. �e code 
shown in Listing 7.5 uses Equation (7.43) to construct a normal map from a height 
map that has already been scaled by the factor of s appearing in Equation (7.41). 
At the edges of the height map, this code calculates differences by wrapping around 
to the opposite side. 
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(a)  (b)  

Figure 7.14. (a) A single-channel image contains a height map for a stone wall. Brighter values 
correspond to greater heights. (b) �e corresponding normal map contains the vectors calculated by 
Equation (7.43) with a scale of 24s = . �e components have been remapped to the range [ ]0,1 . 

 In the early days of GPU bump mapping, the three components of the normal 
vector had to be stored in a texture map whose color channels could hold values in 
the range [ ]0,1 . Since the x and y components of m can be any values in the range 
[ ]1, 1− + , they had to be remapped to the range [ ]0,1  by calculating 1 1

2 2r x= +  for 
the red channel and 1 1

2 2g y= +  for the green channel. Even though the z component 
of m is always positive (because normal vectors always point out of the surface), 
the same mapping was applied to it as well for the blue channel. When a normal 
vector encoded in this way is fetched from a texture map, the GPU performs the 
reverse mapping back to the range [ ]1, 1− +  by multiplying by two and subtracting 
one. Because the normal vectors are shortened a little by linear interpolation when 
they are fetched from a texture map, they should be renormalized in the pixel 
shader. �e normal map shown in Figure 7.14(b) uses this encoding scheme. �e 
fact that the blue channel always contains values in the range [ ]1

2 ,1  gives it the 
characteristic purple tint that normal maps are known for having. 
 With the widespread availability of a much larger set of texture formats, we 
have better options. A texture map can have signed channels that store values in 
the range [ ]1, 1− + , so we no longer need to remap to the range [ ]0,1 . To save space, 
we can take advantage of two-channel formats by storing only the x and y compo-
nents of a normal vector m. After these are fetched from a texture map in the pixel 
shader, we can reconstitute the z component by calculating 
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2 21z x ym m m= − − (7.44) 

under the assumption that m has unit length and zm  is positive. �is method for 
storing normal vectors works well with compressed texture formats that support 
two uncorrelated channels. Equation (7.44) is implemented in Listing 7.6. 

Listing 7.5. �is function constructs a normal map corresponding to the scaled height map having 
power-of-two dimensions width × height specified by heightMap. Normal vectors are written to 
the buffer supplied by normalMap, which must be large enough to hold width × height values. 

void ConstructNormalMap(const float *heightMap, Vector3D *normalMap, 
   int32 width, int32 height) 

{ 
for (int32 y = 0; y < height; y++) 
{ 

int32 ym1 = (y − 1) & (height − 1), yp1 = (y + 1) & (height − 1); 

const float *centerRow = heightMap + y * width; 
const float *upperRow = heightMap + ym1 * width; 
const float *lowerRow = heightMap + yp1 * width; 

for (int32 x = 0; x < width; x++) 
{ 

int32 xm1 = (x − 1) & (width − 1), xp1 = (x + 1) & (width − 1); 

// Calculate slopes. 
float dx = (centerRow[xp1] − centerRow[xm1]) * 0.5F; 
float dy = (lowerRow[x] − upperRow[x]) * 0.5F; 

// Normalize and clamp. 
float nz = 1.0F / sqrt(dx * dx + dy * dy + 1.0F); 
float nx = fmin(fmax(−dx * nz, −1.0F), 1.0F); 
float ny = fmin(fmax(−dy * nz, −1.0F), 1.0F); 
normalMap[x].Set(nx, ny, nz); 

} 

normalMap += width; 
} 

} 
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Listing 7.6. �is pixel shader function fetches the x and y components of a normal vector from the 
2D texture map specified by normalMap at the texture coordinates given by texcoord. �e z com-
ponent of the normal vector is reconstituted with Equation (7.44). 

uniform Texture2D normalMap; 

float3 FetchNormalVector(float2 texcoord) 
{ 

float2 m = texture(normalMap, texcoord).xy; 
return (float3(m, sqrt(1.0 − m.x * m.x − m.y * m.y))); 

} 

7.6.2  Rendering with Normal Maps 

To shade a surface that has a normal map applied to it, we perform the same cal-
culations that we would perform without a normal map involving the view direc-
tion v, light direction l, and halfway vector h. �e difference is that we no longer 
take any dot products with the interpolated normal vector n because it is replaced 
by a normal vector m fetched from a normal map. Before we can take dot products 
with m, though, we have to do something about the fact that it is not expressed in 
the same coordinate system as v and l. We need to either transform v and l into 
tangent space to match m or transform m into object space to match v and l. 
 To transform any vector u from object space to tangent space, we multiply it 
by the matrix T

tangentM  given by Equation (7.32). �e rows of this matrix are the per-
vertex tangent t, bitangent b, and normal n, so the components of u simply become 
⋅t u, ⋅b u, and ⋅n u in tangent space. �is is applied to the object-space view direc-

tion v and light direction l by the vertex shader function shown in Listing 7.7 after 
it calculates the bitangent vector with Equation (7.40). �e resulting tangent-space 
view direction tangentv  and light direction tangentl  should then be output by the vertex 
shader so their interpolated values can be used in the pixel shader. 
 Shading can also be performed in object space by fetching the vector m from 
a normal map and then multiplying it by the matrix tangentM  in the pixel shader. �e 
columns of tangentM  are the vectors t, b, and n, so the transformed normal vector 

objectm  is given by 

object x y zm m m= + +m t b n. (7.45) 

To perform this operation in the pixel shader, we need to interpolate the per-vertex 
normal and tangent vectors in addition to the view direction v and the light direc-
tion l, which now remain in object space. �e handedness σ  of the tangent frame 
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Listing 7.7. �is vertex shader function calculates the tangent-space view direction tangentv  and light 
direction tangentl  for a vertex having object-space attributes position, normal, and tangent and re-
turns them in vtan and ltan. �e w coordinate of the tangent contains the handedness σ of the 
tangent frame used in the calculation of the bitangent vector. 

uniform float3 cameraPosition; // Object-space camera position. 
uniform float3 lightPosition;  // Object-space light position. 

void CalculateTangentSpaceVL(float3 position, float3 normal, float4 tangent, 
  out float3 vtan, out float3 ltan) 

{ 
float3 bitangent = cross(normal, tangent.xyz) * tangent.w; 
float3 v = cameraPosition − position; 
float3 l = lightPosition − position; 
vtan = float3(dot(tangent, v), dot(bitangent, v), dot(normal, v)); 
ltan = float3(dot(tangent, l), dot(bitangent, l), dot(normal, l)); 

} 

also needs to be passed from the vertex shader to the pixel shader. Since handed-
ness is always constant over a triangle, it can be flat interpolated to save some 
computation. After interpolation, the normal and tangent vectors may not have unit 
length, and it’s possible that they are no longer perpendicular. To correct for this, 
we have to orthonormalize them in the pixel shader before we calculate the bi-
tangent vector with Equation (7.40). �e pixel shader function shown in Listing 7.8 
carries out these steps to construct the tangent frame. It then applies Equation 
(7.45) to transform a normal vector m fetched from a normal map into object space. 

Listing 7.8. �is pixel shader function fetches a normal vector from the 2D texture map specified 
by normalMap at the texture coordinates given by texcoord using the function in Listing 7.6. It then 
transforms it into object space by multiplying it by the matrix tangentM . �e interpolated object-space 
normal, tangent, and handedness values are given by normal, tangent, and sigma. 

uniform Texture2D normalMap; 

float3 FetchObjectNormalVector(float2 texcoord, float3 normal, float3 tangent, 
    float sigma) 

{ 
float3 m = FetchNormalVector(texcoord); 
float3 n = normalize(normal); 
float3 t = normalize(tangent − n * dot(tangent, n)); 
float3 b = cross(normal, tangent) * sigma; 
return (t * m.x + b * m.y + n * m.z); 

} 
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7.6.3  Blending Normal Maps 
�ere are times when we might want to combine two or more normal maps in the 
same material. For example, a second normal map could add finer details to a base 
normal map in a high-quality version of the material. It’s also possible that texture 
coordinate animation is causing two normal maps to move in different directions, 
as commonly used to produce interacting ripples on a water surface. We might also 
want to smoothly transition between two different normal maps. In general, we 
would like to have a function ( )blend 1 2, , ,f a bm m  that calculates the weighted sum 
of two normal vectors 1m  and 2m  with the weights a and b. �e sum must behave 
as if the original height maps from which 1m  and 2m  were derived had been added 
together with the same weights a and b, allowing a new normal vector to be calcu-
lated with Equation (7.43). We cannot simply calculate 1 2a b+m m  because it does 
not satisfy this requirement. In particular, if one height map contains all zeros, then 
it should have no effect on the sum, but blending the normal vectors directly would 
cause the results to be skewed toward the vector ( )0, 0,1 . 
 Fortunately, we can easily recover the slopes xd  and yd  to which a normal vec-
tor corresponds. All we have to do is scale a normal vector by the reciprocal of its 
z coordinate to match the unnormalized vector in the numerator of Equation (7.43), 
effectively undoing the previous normalization step. �ese slopes are nothing more 
than scaled differences of heights, so they are values that we can blend directly. 
�is leads us to the blending function 

( ) 1 2 1 2
blend 1 2

1 2 1 2
, , , nrm , ,1 ,x x y yf a b a b a b

z z z z
 = + + 
 

m m (7.46) 

where ( )1 1 1 1, ,x y z=m  and ( )2 2 2 2, ,x y z=m . 
 By setting 1a t= −  and b t= , we can smoothly transition from one normal map 
to another as the parameter t goes from zero to one. To combine two normal maps 
in such a way that they have an additive effect without diminishing the apparent 
size of the bumps encoded in either one, we apply Equation (7.46) with the weights 

1a b= = . Since the result is normalized, we can multiply all three components by 
1 2z z , in which case the additive blending function is given by 

( ) ( )add 1 2 2 1 1 2 2 1 1 2 2 1, nrm , ,f z x z x z y z y z z= + +m m . (7.47) 

�e weights a and b do not need to be positive. Using a negative weight for one 
normal map causes it to be subtracted from the other so that its bumps appear to 
be inverted. 
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7.7  Parallax Mapping 

Plain bump mapping has its limitations. While it often looks good when a surface 
is viewed from a nearly perpendicular direction, the illusion of bumpiness quickly 
breaks down as the angle between the surface and the viewing direction gets 
smaller. �is is due to the fact that the same texels are still rendered at the same 
locations on the surface from all viewing directions, betraying the flatness of the 
underlying geometry. If the surface features encoded in the normal map actually 
had real height, then some parts of the color texture would be hidden from view by 
the bumps, and other parts would be more exposed, depending on the perspective. 
A technique called parallax mapping shifts the texels around a little bit to greatly 
improve the illusion that a surface has varying height. 
 Parallax mapping works by first considering the height h and normal vector n 
mapped to each point on a surface. As shown in Figure 7.15, these values can be 
used to establish a plane [ ]| dn  that is tangent to the bumpy surface at that point. 
�is plane serves as a local approximation to the surface that can be used to calcu-
late a texture coordinate offset that accounts for the viewing direction and produces 
the appearance of parallax. Since we need only the offset, we can assume that the 
original texture coordinates are ( )0, 0  for simplicity. �e value of d is then deter-
mined by requiring that the point ( )0, 0, h  lies on the plane, from which we obtain 

zd n h= − . (7.48) 

For a particular tangent-space view direction v, the point where the ray t+ v
intersects the plane [ ]| dn  is approximately the point  that would be visible from
the direction v if the surface actually had the height h at the point sampled on the 
flat geometry. �e parameter t is calculated by solving the equation 

[ ] ( )| 0d t⋅ + =n v , (7.49) 

and the point  is thus given by

zn h
= +

⋅
v

n v
  . (7.50) 

�e x and y coordinates of  provide the offset that should be added to the original
texture coordinates. All texture maps used by the pixel shader, including the nor-
mal map, are then resampled at these new coordinates that include the parallax 
shift. 
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Figure 7.15. �e height h and normal vector n sampled at the point  are used to construct
a plane that approximates the bumpy surface shown by the blue line. For a tangent-space 
view vector v, the parallax offset is given by the x and y coordinates of the point  where
the ray t+ v  intersects the plane.

 In practice, the offset given by Equation (7.50) is problematic because the dot 
product ⋅n v can be close to zero, or it can even be negative. �is means that the 
offset can produce an arbitrarily large parallax shift toward or away from the 
viewer when n and v are nearly perpendicular. �e usual solution to this problem, 
even though it has little geometric significance, is to gradually reduce the offset as 
⋅n v becomes small by simply multiplying by ⋅n v! �is effectively drops the divi-

sion from Equation (7.50) and gives us the new offset formula 

.xy z xyn h= v (7.51) 

�is offset generally produces good results, like those shown in Figure 7.16, and it 
is very cheap to calculate. Because we are no longer dividing out their magnitudes, 
however, we must ensure that both n and v have unit length before applying this 
formula. 
 �e value of zn h in Equation (7.51) is precomputed for every texel in the nor-
mal map and stored in a separate parallax map having a single channel. To mini-
mize storage requirements, an 8-bit signed format can be used in which texel 
values fall in the range [ ]1, 1− + . Unsigned values h from the original height map 
are remapped to this range by calculating 2 1h −  before multiplying by zn  and stor-
ing the results in the parallax map. A signed format is chosen so that texture coor-
dinates are shifted both toward and away from the viewer when the full range of 
heights is well utilized. An original height of 1 2h =  corresponds to no offset, larger 
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Figure 7.16. Two flat surfaces are rendered with only normal mapping in the left column. A parallax 
shift has been applied to the same surfaces in the right column. Texture coordinate offsets are cal-
culated using Equation (7.51) with four iterations. 

heights cause a surface to appear raised, and smaller values cause a surface to ap-
pear depressed. In the pixel shader, the sampled values of zn h are multiplied by 1 2 
to account for the doubling when they were converted to the signed format. �ey 
must also be multiplied by the same scale used when the normal map was gener-
ated so that the heights used in parallax mapping are the same as those that were 
used to calculate the per-texel normal vectors. 
 For bump maps containing steep changes in height, offsets given by Equation 
(7.51) can still be too large because the tangent plane becomes a poorer approxi-
mation as the size of the offset increases. Shifted color samples taken too far away 
from areas having a steep slope often produce visible artifacts. �is problem can 
be eliminated in most cases by using k iterations and multiplying the offset by 1 k 
each time. A new value of zn h is fetched from the parallax map for each iteration, 
allowing each incremental parallax shift to be based on a different approximating 
plane. 
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 �e pixel shader code shown in Listing 7.9 implements parallax mapping with 
Equation (7.51), and it uses four iterations to mitigate the appearance of artifacts 
produced by steep slopes. �e two-component scale value u passed to the function 
is given by 

,
2 2x y

s s
kr kr

 
=  
 

u , (7.52) 

and it accounts for several things that can be incorporated into a precalculated 
product. First, it includes the height scale s that was originally used to construct 
the normal map. Second, since the heights are measured in units of texels, the par-
allax offsets must be normalized to the actual dimensions ( ,r rx y ) of the height map, 
so the scale is multiplied by the reciprocals of those dimensions. (�is is the only 
reason why there are two components.) �ird, the scale includes a factor of 1 2  to 
account for the multiplication by two when the heights were converted from un-
signed to signed values. Fourth, the scale includes a factor of 1 k, where k is the 
number of iterations, so that each iteration contributes its proper share of the final 
result. Finally, the scale may include an extra factor not shown in Equation (7.52) 
that exaggerates the parallax effect. 

Listing 7.9. �is pixel shader function applies parallax mapping to the texture coordinates given by 
texcoord using four iterations and returns the final result. �e texture specified by parallaxMap 
holds the signed values zn h belonging to the parallax map. �e vdir parameter contains the tangent-
space view direction, which must be normalized to unit length. �e value of scale is given by 
Equation (7.52), where 4k =  in this code. 

uniform Texture2D parallaxMap; 

float2 ApplyParallaxOffset(float2 texcoord, float3 vdir, float2 scale) 
{ 

float2 pdir = vdir.xy * scale; 
for (int i = 0; i < 4; i++) 
{ 

// Fetch n.z * h from the parallax map. 
float parallax = texture(parallaxMap, texcoord).x; 
texcoord += pdir * parallax; 

} 

return (texcoord); 
} 
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