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2 Answers to Exercises 

Chapter 5 

1. �e following table shows the storage requirements, in bytes, for 32-bit and
64-bit pixels.

Display Resolution 32-bit Pixels 64-bit Pixels

640×480 1,228,800 2,457,600 

1024×768 3,145,728 6,291,456 

1280×720 3,686,400 7,372,800 

1280×1024 5,242,880 10,485,760 

1920×1080 8,294,400 16,588,800 

2560×1440 14,745,600 29,491,200 

3840×2160 33,177,600 66,355,200 

7680×4320 132,710,400 265,420,800 

2. A CIE RGB color CIEC  is transformed into an sRGB color sRGBC  with

sRGB CIE

7.43651 1.40848 0.781042
0.807764 6.91648 0.750184
0.0499435 0.77922 5.96362

C C
− 

 = − − 
− −  

. 

�e reverse transformation is given by 

CIE sRGB

0.137229 0.0262932 0.0146651
0.0163836 0.1498 0.0166981

0.00328997 0.0197934 0.169742
C C

− 
 =  
  

. 

3. ( ) ( )
( ) ( )
( ) ( )

, 0.735, 0.265
, 0.274, 0.717
, 0.167, 0.00886

R R

G G

B B

x y
x y
x y

=

=

=

4. �e matrix that converts from the XYZ color space to the uRGB color space
is given by
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uRGB

1.716651 0.355671 0.253366
0.666684 1.616481 0.015769
0.017640 0.042771 0.942103

− − 
 = − 

−  

M . 

When we multiply this by the matrix 1
sRGB
−M  that converts from sRGB to XYZ, 

we obtain as the matrix that converts directly from sRGB to uRGB 

sRGB uRGB

0.627404 0.329283 0.043313
0.069097 0.919540 0.011362
0.016391 0.088013 0.895595

→

 
 =  
  

M . 

�e inverse of this matrix, converting from uRGB to sRGB is 

uRGB sRGB

1.660491 0.587641 0.072850
0.124550 1.132900 0.008349
0.018151 0.100579 1.118730

→

− − 
 = − − 
− −  

M . 

5. ( ) 3 20.274882 0.725118g x x x= +

6. �e matrix that converts from W to the coordinate system in which x points
east and y points up is

0 1 0
0 0 1
1 0 0

 
 − 
−  

, 

and the inverse converting back to W is 

0 0 1
1 0 0
0 1 0

− 
 
 

−  

. 

�e matrix that converts from W to the coordinate system in which x points 
east and z points up is 

0 1 0
1 0 0
0 0 1

 
 
 

−  

, 

and this matrix is equal to its inverse. 
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7. �e world-space direction is equal to [ ]T
Skull 1 0 0W , where SkullW  is the ma-

trix given by Equation (5.25). �is is simply the first column of SkullW . 

8. ( ) ( )
( ) ( )

x z z z x x

w z z z w w

p p q p p qx
p p q p p q

− − −
=

− − −
 and ( ) ( )

( ) ( )
y z z z y y

w z z z w w

p p q p p q
y

p p q p p q
− − −

=
− − −

. 

9. Let 1 0= −u    and 2 0= −v   . �en 1 2x yu u= +u e e  and 1 2x yv v= +v e e . �e 
wedge product is 

 ( ) ( )1 2x y y xu v u v∧ = − ∧u v e e , 

 where the presence of the 2D bivector basis element 1 2∧e e  corresponds to the 
fact that we have calculated an area. �is is the area of the parallelogram hav-
ing sides u and v. �e area of a triangle with sides u and v is half of that, which 
has the magnitude equivalent to Equation (5.35). 

10. �ere are three possible lengths for each interior edge. An edge connecting 
vertices spaced two apart is the hypotenuse of the right triangle in the figure 
below, and it has length 2 . An edge connecting vertices spaced four apart is 
a diameter of the octagon and thus has length 2. �e remaining possibility, an 
edge connecting vertices spaced three apart is the side opposite the angle 3

4
π  in 

the figure. By the law of cosines, its length is 2 2+ . �e total length of all 
five interior edges is minimized when there are four edges having length 2 
and one edge having length 2. 
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Chapter 6 

1. �e following table lists the [ ]| dn  components of the world-space frustum
planes. Note that these are not normalized.

Frustum Plane World-Space n World-Space d 

Near [ ]camera 2M  [ ]camera 3n− − ⋅n M

Far [ ]camera 2−M [ ]camera 3f − ⋅n M  

Left [ ] [ ]camera 0 camera 2g s+M M  [ ]camera 3− ⋅n M

Right [ ] [ ]camera 0 camera 2g s− +M M [ ]camera 3− ⋅n M

Top [ ] [ ]camera 1 camera 2g +M M  [ ]camera 3− ⋅n M

Bottom [ ] [ ]camera 1 camera 2g− +M M [ ]camera 3− ⋅n M

2. �e Plücker coordinates { }|v m  are given by the following formulas, where
the notation [ ]| df fn  means the n and d components of the plane f.

{ }
{ }
{ }
{ }

|
|
|
|

d d
d d
d d
d d

× −

× −

× −

× −

l t l t t l

t r t r r t

r b r b b r

b l b l l b

n n n n
n n n n
n n n n
n n n n

Bivectors corresponding to the same lines are given by ∨t l, ∨r t, ∨b r, and 
∨l b.

3. , ,ns n n
g g

 ± ± 
 

 and , ,fs f f
g g

 ± ± 
 

. 

4. 2 1hr s
g

= +  and 
2

2 2

1sin
1

sα
g s

+
=

+ +
. 

5. n g  
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6. 1
infinite

0 0 0
0 1 0 0
0 0 0 1

1 10 0

s g
g

n n

−

 
 
 

=  
 
 −
  

P , ( )

( )

1
infinite

0 0 0
0 1 0 0
0 0 0 1

1 10 0
1

s g
g

n ε n

−∗

 
 
 

=  
 
 −
 − 

P , 

1
frustum

0 0 0
0 1 0 0
0 0 0 1

10 0

s g
g

n f
nf f

−

 
 
 

=  
 − −
  

R , 1
infinite

0 0 0
0 1 0 0
0 0 0 1

10 0 0

s g
g

n

−

 
 
 

=  
 
 
  

R , and 

( )

( ) ( )

1
infinite

0 0 0
0 1 0 0
0 0 0 1

10 0
1 1

s g
g

ε
n ε n ε

−∗

 
 
 

=  
 
 −
 − − 

R . 

7. 

2 0 0

20 0

0 0

0 0 1 0

g r l
r l r l

g b t
b t b t

f nf
f n f n

+ − − −
 

+ −
 − −
 
 −

− − 
 
 

8. 

0 0 0
0 0 0

20 0

0 0 1 0

g s
g

f n nf
f n f n

 
 
 

+ 
− − − 

  

9. 

0 0 0
0 0 0
0 0 1 2
0 0 1 0

g s
g

n

 
 
 

− 
 
 
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10. �e w component of camera  is given by 

 22

23

1 1P
P f
−

=  

 because ( )22P f f n= −  and ( )23P nf f n= − − . �e dot product camera⋅k   only 
involves the z and w components of camera  in this case, and it is given by 

 camera 1 n
f

⋅ = −k  . 

 Taking the reciprocal, ( )m f f n= − , and mk  thus recovers frustumP . 

11. For any near plane k, the far plane f is given by 

 ( ), ,1 ,x y z wk k k k= − − − −f . 

 �e moment m of the line where k and f intersect is given by w xyz w xyzk f−f k , 
which is always ( )0, 0, wk . �is means that the plane containing the line { }|v m  
and the origin is ( )0, 0, , 0wk , which is the x-y plane. 

12. �e scalar field ( )devicez   is given by 

 ( ) ( )device
1

x x y y z z w
z

z k p k p k p k
p

= + + + . 

 Its gradient is then 

 ( )device 2, ,y x x y y wx

z z z

k k p k p kkz
p p p

+ + = − 
 

∇ , 

 which we abbreviate z∇ . �e direction v of the line where the near plane k and 
far plane f intersect is given by 

 ( ), , 0xyz xyz y xk k= × = −v k f , 

 and the moment m of the line is given by ( )0, 0, wk=m  as in the previous 
exercise. Clearly, 0z ⋅ =v∇ , so the gradient is perpendicular to the direction v. 
�e point  on the line { }|v m  closest to the origin is given by 

 ( ) ( )2
2 2 , , 0w

x y
x y

kv k k
k k

= × = −
+

v m , 
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 and the point  must be equal to t+ v  for some t. Since 0z ⋅ =v∇ , the values 
of ( )z ⋅ − ∇  and ( )z ⋅ − ∇  are the same. After plugging in the values of z∇  
and , the dot product ( )z ⋅ − ∇  simplifies to zero, so the gradient is perpen-
dicular to − . 

13. �e near plane is now ( )0, 0,1,1  in clip space, and this corresponds to 3 2+P P  
in camera space. �is means that 2 3m= −P k P  and thus 3 2 32 m= − = −f P P P k . 
When we solve camera 0⋅ =f   for m, we get 

 
camera

2m =
⋅k 

. 

 �en ( )2 , , 1,x y z wmk mk mk mk= −P . 

14. �e modified projection matrix transforms  as 

 
( )device device

0 0 1 0
1

x

y x y z

z z

p
A B C δ D p Ap Bp C δ p D

p p

 
 + + + + +     =        
 
 

. 

 �e original projection matrix transforms ( )camera, ,x y zp p p δ+  as 

 
( )camera

camera camera0 0 1 0
1

x

y x y z

z z

p
A B C D p Ap Bp C p δ D

p δ p δ

 
  + + − +     =    − −    
 
 

. 

 Setting the results equal to each other after the perspective divide, we have 

 device
camera

x y x y

z z

Ap Bp D Ap Bp D
C δ C

p p δ
+ + + +

+ + = +
−

. 

 Solving for deviceδ  gives us 

 ( )
( )

camera
device

camera

x y

z z

Ap Bp D δ
δ

p p δ
+ +

=
−

. 
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Chapter 7 

1. �e vectors r and s are defined as

( )2= ⋅ −r n l n l   and   ( )2= ⋅ −s n v n v. 

�en ( ) ( )2⋅ = ⋅ ⋅ − ⋅r v n l n v l v, and ( ) ( )2⋅ = ⋅ ⋅ − ⋅s l n v n l v l, which have the 
same value. 

2. ( ) ( )
( ) ( )[ ]

( )
( )

( )
( )

2

22 2

22

2

2 1

α α
α

α

α

α

α

l v

⋅ + ⋅+ 
⋅ = ⋅ = + + ⋅ + 

⋅ + ⋅
=

+ + ⋅  

 ⋅ + ⋅
=  ⋅ + 

n l n vl vn h n
l v l v l v

n l n v
l v

n l n v
l v

3. In addition to the constraints 1 1x⋅ =s e  and 2 2x⋅ =s e , we know that 0⋅ =s n .
�is gives us the 3 3×  system

1 1

2 2

0

x
x

← →   
   ← → =   
← →      

e
e s
n

. 

Using the transpose of Equation (1.95) for the inverse of the matrix, we have 

[ ]

1

2 1 1 2 2
1 2

1
, ,

0

x
x

   ↑ ↑ ↑
   = × × ×   
   ↓ ↓ ↓   

s e n n e e e
e e n

. 

From Equation (7.37), we have 

( )

( )

2 1 1 2
1 2 2 1

1 2 2 1
1 2 2 1

1

1 .

y y
x y x y

x x
x y x y

= −
−

= −
−

t e e

b e e
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 �e dot product ⋅s t is then 

 

[ ] ( )
( ) ( )( ) ( )

[ ] ( )
[ ] [ ]( )

2 1 1 2 2 1 1 2
1 2 1 2 2 1

1 2 1 2 1 2 2 1
1 2 1 2 2 1

1
, ,

1 , , , ,
, ,

1,

x x y y
x y x y

x y x y
x y x y

⋅ = × + × ⋅ −
−

= −
−

=

s t e n n e e e
e e n

e e n e e n
e e n

 

 and the dot product ⋅s b is 

 

[ ] ( )
( ) ( )( ) ( )

[ ] ( )
[ ] [ ]( )

2 1 1 2 1 2 2 1
1 2 1 2 2 1

1 2 2 1 1 2 1 2
1 2 1 2 2 1

1
, ,

1 , , , ,
, ,

0 .

x x x x
x y x y

x x x x
x y x y

⋅ = × + × ⋅ −
−

= −
−

=

s b e n n e e e
e e n

e e n e e n
e e n

  

4. Define 1 2 3x y zt t t= + +t e e e  and 1 2 3x y zn n n= + +n e e e . �en t  is a bivector 
given by 1 2 3x y zt t t= + +t e e e . �e antiwedge product ∨n t  is 

 ( ) ( ) ( )23 31 12y z z y z x x z x y y xn t n t n t n t n t n t∨ = − + − + −n t e e e , 

 which is equivalent to the vector b given by ×n t. 

5. ( ) ( )scale , normalize , ,x y zf s sm sm m=m  

Chapter 8 

1. 272.25 10 cd×  

2. �e plane f has two nonzero coordinates and can be written ( ), 0, , 0x zf f=f . 
From the dot product r⋅ =f  , we can write z z x xf l r f l= − . Squaring both sides 
and substituting 2 21z xf f= −  (because f is normalized), we have 

 ( )2 2 2 2 21 2x z x x x xf l r rf l f l− = − + . 

 Rewriting as a quadratic equation in xf  gives us 

 ( )2 2 2 2 22 0x z x x x zl l f rl f r l+ − + − = . 
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 �e values of xf  are then given by 

 
2

x
b b acf

a
± −

=    or   
2

x
cf

b b ac
=

± −
, 

 where 2 2
x za l l= + , xb rl= , and 2 2

zc r l= − . For each value of xf , the correspond-
ing value of zf  is given by 

 x x
z

z

r f lf
l
−

= . 

 �e coordinate xq′  where each plane f intersects the plane z g=  is then 

 z
x

x

fq g
f

′ = − . 

 To show that this is equal to the value of xq  given by Equation (8.29), we cal-
culate the coordinate xp′  where f intersects the plane zz l=  and show that it is 
the same value of xp  from which xq  is derived. �e coordinate xp′  is given by 

 z x x
x z x

x x x

f f l r rp l l
f f f

−′ = − = = − . 

 Using this value of xp′ , the distance u used in Equation (8.28) is 

 x x
x

ru p l
f

′= − = . 

 When we substitute the above solutions for xf  having the radical in the denom-
inator, we find that 

 
( ) ( )2 2 4 2 2 2 2 2

2 2
x x z x z

z

l r l r r l r l l
u

l r
± + − +

=
−

. 

 �ese are exactly the same values of u given by Equation (8.28), so the corre-
sponding values of xq  must be equal to those produced by the values of xq′  
given above. 

3. Plugging ( )0, 0,1, n= −k  into Equation (8.43) gives us 2 2d n r= . �e value of 
a in Equation (8.41) does not change, but we now have ( ) 2

z zb l n l r= − − . Us-
ing these values in Equation (8.42) yields 



12 Answers to Exercises 

 
2 2

device 2 2
z z

z

l l n r rnz
l r

− − ±
=

−
. 

 �is can be rewritten as 

 ( )
( ) ( )device 1 z

z z

n l rz
l r l r

±
= −

+ −
. 

 Choosing different signs in the numerator causes a different factor to be can-
celled in the denominator, so this is equivalent to 

 device 1
z

nz
l r

= −
±

. 

4. Let the notation [ ]pq  represent the distance between vertices k
p  and k

q . By 
symmetry, [ ] [ ] [ ] [ ]06 17 24 35= = =  and [ ] [ ]46 57= . We need to show that the 
distances between each of the 22 remaining pairs of vertices is less than either 
[ ]06  or [ ]46 . First, the length of each edge on the near plane, such as [ ]01 , is 
shorter than the diagonal length [ ]02 , and the length of each edge on the far 
plane, such as [ ]45 , is short than the diagonal length [ ]46 . Because the edges 
on the far plane must be longer, [ ] [ ]02 46< . At this point, we have eliminated 
the six possibilities on the near plane and the four edges on the far plane. �e 
remaining 12 possibilities lie on the lateral planes. Each of the four lateral edge 
lengths such as [ ]04  is shorter than the diagonal length of a lateral side such as 
[ ]05 , which has the same length as [ ]14 . Each of these eight diagonal lengths 
is shorter than the interior diagonal length [ ]06 . �is accounts for all cases. 

5. �ere are four possible cases. First, if 1u , 2u , and 3u  are all negative, then 1w =  
and 0L L= . Second, if 1 0u ≥  but 2u  and 3u  are negative, then ( )11 satw u= − , 
and 

 ( )( ) ( )1 0 1 11 sat satL u L u L= − + , 

 which correctly blends from cascade 0 to cascade 1. �ird, if 1 0u ≥  and 2 0u ≥  
but 3u  is negative, then ( )2satw u= , and 

 ( )( ) ( )2 1 2 21 sat satL u L u L= − + , 

 which correctly blends from cascade 1 to cascade 2. Finally, if 1u , 2u , and 3u  
are all nonnegative, then ( )31 satw u= −  (using the fact the that cascade 3 be-
gins beyond the end of cascade 1), and 
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 ( )( ) ( )3 2 3 31 sat satL u L u L= − + , 

 which correctly blends from cascade 2 to cascade 3. 

6. Suppose that all three inequalities are true. �en combining i j<  and j k< , we 
must have i k< . But it must also be true, by the third inequality, that k i< , 
which is a contradiction. Now suppose that none of the three inequalities is 
true. �en i j> , j k> , and k i> . Again, we have a contradiction because i k>  
and k i>  would both be required to be true. �us, it can only be the case the 
either one or two of the inequalities is true. 

7. We need to integrate from the camera position  to the point where the ray 
( )t t= + d   intersects the plane f. �is gives us 

 ( ) ( )
0

0
0

t
τ α t dt= − ⋅ +∫d f d d , 

 where 0t = − ⋅ ⋅f f d . Evaluating, we have 

 ( ) ( ) 2
0

2
ατ ⋅

=
⋅

fd d
f d
 . 

Chapter 9 

1. If 1 2=  , then the enclosing sphere has the same center, and its radius is 
( )1 2max ,r r . Otherwise, let 2 1d = −   be the distance between the centers, 

and define ( )2 1 d= −v   . Now let 

 ( )1 2min ,a r d r= − −    and   ( )1 2max ,b r d r= + . 

 �ese represent the minimum and maximum extents of the spheres along a line 
through the two centers, where zero coincides with 1 . �e center  and radius 
R of the enclosing sphere are then given by 

 1 2
a b+

= + v     and   
2

b aR −
= . 

2. Suppose the equilateral triangle has sides of length one, and let its vertices be 
located at the coordinates ( )1

1 2 , 0= − , ( )1
2 2 , 0= , and ( )3

3 20,= . �e opti-
mal bounding sphere has center  and radius r given by 
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 30,
6

 
=  
 

    and   3
3

r = . 

 Without loss of generality, we assume that the vertices 1  and 2  are found to 
be farthest apart, and we establish an initial approximate bounding sphere hav-
ing center at the origin and radius 1

2 . �e vertex 3  is not inside this sphere. 
Expanding the initial sphere with Equation (9.7) produces the center ′  and 
radius r′ given by 

 3 10,
4

 −′ =  
 

    and   3 1
4

r +′ = . 

 �ese both differ from the optimal center and radius by ( )3 3 12 0.10566− ≈ . 

3. ( ) 22
maxx x y y z zv h v h v h v r≥ + + +  

 ( ) maxmax , ,x x y y z zv h v h v h r− − − ≥  

4. �e effective radius rg is the sum of separate contributions from half the height 
of the cylinder and its actual radius. �e contribution from the half height h is 
h ⋅g u . As shown in the figure, the contribution from the radius r is sinr α. 
Since cos α = ⋅g u, we can write this as ( )2 21 cos 1r α r− = − ⋅g u . �en 

 ( ) 21r h r= ⋅ + − ⋅g g u g u . 

 



rg g
α

α
r

hu

sinr α
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5. A point  on the surface of an ellipsoid with center , shown in the figure, is 
given by 

 ( ) ( ) ( )cos sin sin sin cosx y zh θ φ h θ φ h φ= + + +s t u  , 

 where [ ]0, 2θ π∈  and [ ]0,φ π∈ . 

 

 We want to maximize ( )r = ⋅ −g g   , so we take derivatives with respect to θ  
and φ and set them to zero as follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

sin sin cos sin 0

cos cos sin cos sin 0

x y

x y z

r
h θ φ h θ φ

θ
r

h θ φ h θ φ h φ
φ

∂
= − ⋅ + ⋅ =

∂
∂

= ⋅ + ⋅ − ⋅ =
∂

g

g

g s g t

g s g t g u . 

 Defining ( )xx h= ⋅g s , ( )yy h= ⋅g t , and ( )zz h= ⋅g u , we can rewrite these as 

 

tan

tan cos sin

yθ
x
x yφ θ θ
z z

=

= + . 

 �e first of these is true for a triangle having legs of length x and y, so it must 
be the case that 

 
2 2

cos xθ
x y

=
+

   and   
2 2

sin yθ
x y

=
+

. 

 �en tan φ can be written as 





rg g

xh s
yh t
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2 2

tan x yφ
z
+

= . 

 Using the trigonometric identity 2cos 1 1 tanφ φ= + , we can now write 

 
2 2 2

cos zφ
x y z

=
+ +

   and   
2 2

2 2 2
sin x yφ

x y z
+

=
+ +

. 

 Plugging all of these into the expression for rg gives us 

 ( ) ( ) ( )2 2 22 2 2
x y zr h h h= ⋅ + ⋅ + ⋅g g s g t g u . 

6. �e minimum value of ⋅g z for which the plane g intersects the cone is sin α− . 
�is means that points on the positive side of the plane are visible only when

sin α⋅ > −g z . 

7. �is function generates a polyhedron corresponding to a spot light having pro-
jection distance g and aspect ratio s. �e value of rmax provides the distance 
to the far plane at the light’s radius. �e Mlight parameter specifies the object-
space to world-space transformation for the light. 

void BuildSpotPolyhedron(const Transform4D& Mlight, float g, float s, float rmax, 
                         Polyhedron *polyhedron) 
{ 
 polyhedron−>vertexCount = 5; polyhedron−>edgeCount = 8; polyhedron−>faceCount = 5; 
 
 // Generate vertex for the light position. 
 polyhedron−>vertex[0] = Mlight.GetTranslation(); 
 
 // Generate vertices for the far side. 
 float y = rmax / g, x = y * s; 
 polyhedron−>vertex[1] = Mlight * Point3D(x, y, rmax); 
 polyhedron−>vertex[2] = Mlight * Point3D(x, −y, rmax); 
 polyhedron−>vertex[3] = Mlight * Point3D(−x, −y, rmax); 
 polyhedron−>vertex[4] = Mlight * Point3D(−x, y, rmax); 
 
 // Generate lateral planes. 
 Transform4D inverse = Inverse(Mlight); 
 float mx = 1.0F / sqrt(g * g + s * s), my = 1.0F / sqrt(g * g + 1.0F); 
 polyhedron−>plane[0] = Plane(−g * mx, 0.0F, s * mx, 0.0F) * inverse; 
 polyhedron−>plane[1] = Plane(0.0F, g * my, my, 0.0F) * inverse; 
 polyhedron−>plane[2] = Plane(g * mx, 0.0F, s * mx, 0.0F) * inverse; 
 polyhedron−>plane[3] = Plane(0.0F, −g * my, my, 0.0F) * inverse; 
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// Generate far plane. 
polyhedron−>plane[4].Set(−Mlight[2], Dot(Mlight[2], Mlight[3]) + rmax); 

// Generate all edges and lateral faces. 
Edge *edge = polyhedron−>edge; Face *face = polyhedron−>face; 
for (int32 i = 0; i < 4; i++, edge++, face++) 
{ 

edge[0].vertexIndex[0] = uint8(0); 
edge[0].vertexIndex[1] = uint8(i + 1); 
edge[0].faceIndex[0] = uint8(i); 
edge[0].faceIndex[1] = uint8((i − 1) & 3); 

edge[4].vertexIndex[0] = uint8(((i + 1) & 3) + 1); 
edge[4].vertexIndex[1] = uint8(i + 1); 
edge[4].faceIndex[0] = 4; 
edge[4].faceIndex[1] = uint8(i); 

face−>edgeCount = 3; 
face−>edgeIndex[0] = uint8(i); 
face−>edgeIndex[1] = uint8((i + 1) & 3); 
face−>edgeIndex[2] = uint8(i + 4); 

} 

// Generate far face. 
face[0].edgeCount = 4; 
face[0].edgeIndex[0] = 4; face[0].edgeIndex[1] = 5; 
face[0].edgeIndex[2] = 6; face[0].edgeIndex[3] = 7; 

} 

8. Let 1
occluder
−=N M . �e six world-space bounding planes are given by 0N , 1N , 2N ,

3 0xs −N N , 3 1ys −N N , and 3 2zs −N N  (where the notation iN  means row i of 
the matrix N.) 

9. �e minimum value of φ is given by
2

0 01

max
sin

2
α zφ
τ

−  = − 
 

, 

and this exists when 2
0 0 max2 1α z τ ≤ . 
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Chapter 10 

1. Suppose that  and  lie at opposite ends of a diameter of the sphere. �en
1 0t = , 2 1t = , 2R=v , 2 24v R= , 2 2p R= , and 22R⋅ = −v . Plugging these val-

ues into Equation (10.35) gives us 
2 2 2

2 2 2

2 4 42 1
3 3

R R R RB R
R R R

 = − + − =  
. 

2. ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1

2 1 2 11

2 1 11
2

1 1 1
1

n n

i i

m mi m m n i
n n

m n nm n
n

m n m n
n

= =

− − + = + + 
 

− +   = + +    
   

= + + − +

= +

∑ ∑

3. First integrating over φ, we have

( )

( )

22

3 220 0

2

3 220

1 sin
4 1 2 cos

1 sin .
2 1 2 cos

π π

π

g α dα dφ
π g g α

g α dα
g g α

−

+ −

−
=

+ −

∫ ∫

∫
Making the substitutions 21 2 cosu g g α= + −  and 2 sindu g α dα=  then allows 
us to integrate over α to get 

( )

( )22

2 2

12 21 2

3 2
1 2 1

2

1 1 1
4 2

1 1 1
2 1 1

1.

gg g

g g g

g du g
g u g u

g
g g g

++ +

+ − −

− −  =   

−  = + + − 
=

∫
 

4. �e following table lists the components of Equation (10.83) for the six possi-
ble orderings of a, b, and c.
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Case d = min(a, b) e = max(a, b) f = max(d, c) med(a, b, c) = min(f, e) 

a b c< <  a b c b 

a c b< <  a b c c 

b a c< <  b a c a 

b c a< <  b a c c 

c a b< <  a b a a 

c b a< <  b a b b 

5. Most classes have multiple symmetry planes, and the table below lists corners
for each class forming one of the possible planes when combined with the cube
center using the numbering from Figure 10.32.

Class Corners Class Corners 

1 0, 2 9 0, 2 

2 1, 4 10 1, 2 

3 0, 2 11 0, 3 

4 1, 2 14 0, 3 

5 0, 3 15 0, 5 

6 0, 2 16 0, 5 

7 1, 2 17 1, 4 

8 0, 3 

6. �e five possible triangulations of class #5 are shown below.

7. Marching squares has 16 distinct cases that are partitioned into the four equiv-
alence classes shown in the following table.
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Class Cases 

2 

8 

4 

2 
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